1. Department, Course Number, and Course Title:

MECHANICAL ENGINEERING

ME 415 AIR CONDITIONING

2. Designation: Required □ Elective ☑ Lower Division □ Upper Division ☑

3. Course Description: Psychrometric properties of air, heat loads, air conditioning and heating equipment, and

air distribution

4. Prerequisites: ME 306 and ME 326 B

5. Text and Materials: Heating, Ventilating, and Air Conditioning, Analysis and Design, 5th ed., McQuiston,

F.C., and Parker, J.D., and Spitler, J.D., John Wiley and Sons, 2000

References:

Heating and Cooling Buildings, Design for Efficiency. Jan . Kreider, and Ari Rabl,

McGraw-Hill, 1994.

Jennings, The Thermal Environment conditioning and Control, Harper & Row, 1978.

ASHRAE Handbook, 1992

6. Course Objectives:

Course Outcomes

- the ability to calculate the properties of moist air, psychrometrics for human comfort, and health.
- an appreciation for the history of air conditioning.
- the ability to estimate building heating, and cooling loads.
- the ability to evaluate physiological reactions to the environment.
- the ability to design hydronic and air distribution systems.
- an introductory understanding of duct design, and fan selection.
- the broad education necessary to understand the impact of engineering solutions in a global/societal context.
- an ability to communicate effectively.
- a desire to be a flexible and adaptable team player.

7. Topics Covered: (in Order of Presentation)

- Introduction (Ch. 1)
- Air-conditioning Systems (Ch. 2)
- Moist Air Properties and Conditioning Processes (Ch. 3)
- Comfort and Health-Indoor Environmental Quality (Ch. 4)
- Heat Transmission in Building Structures (Ch. 5)
- Space Heating Load (Ch. 7)
- The Cooling Load (Ch. 8)
- Energy Calculations (Ch. 9)
- Fans and Building Air Distribution (Ch. 12)

8. Class Schedule: Number of Sessions per week: 2

Duration of each session: 1 hour 40 minutes

9. Contribution of course to meeting the professional component:

This course is part of the 24 units of technical electives required for the mechanical engineering program.

Engineering Science 2 units Engineering Design 2 units

10. Relationship of course to program objectives:

This course relates to the program objectives by contributing to the following measurable outcomes at the level indicated for all engineering graduates:

Knowledge outcomes:

- an ability to apply knowledge of mathematics, science, and engineering (abet a)
- the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context (abet h)
- a knowledge of computer aided design and simulation software

Skill outcomes:

- an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability (abet c)
- an ability to function on multidisciplinary teams (abet e)
- an ability to communicate effectively (abet g)
- an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice (abet k)
- an ability to select materials and manufacturing processes
- an ability to visualize designs from engineering drawings
- an ability to think in a logical sequential process

Attitudes Outcome:

- a recognition of the need for an ability to engage in lifelong learning (abet i)
- a desire to be a flexible and adaptable team player (collaborative attitude)

11. Prepared by: Ram Manvi 06/2006