Assessing and Enhancing the ME Curriculum on a Continuing Basis

Curriculum Reform Meeting California State University, Los Angeles

Darrell W. Guillaume 8/22/05

Assessment Process

Evaluation Versus Assessment

- Evaluation
 - Performance is Measured
 - A Score or Label is Assigned

- Judgment is Rendered (Comparison With Others)
- Praise or Condemnation Ensues
- Assessment
 - Performance is Measured
 - Comparison is Made with Past Results
 - Improvement is Made (Key: Continuous Improvement)

Assessment Questions

- What Is in the Curriculum?
 - What Else Should Be Included?
 - Who Should Decide?
 - How Often Should it Be Changed?
- What Do Students Know, What Can They Do, and What Attitudes Do They Have when They Leave?
 - How Should these Be Measured?
 - When Should these Be Measured?

Non-Assessment Model

Providing a Strong Traditional Curriculum Should Yield Knowledgeable and Marketable Engineers

Assessment Model

Change in Reference Point

Student Learning Outcomes

- Student learning outcomes are defined in terms of the
 - knowledge,
 - skills,
 - and attitudes

that students have attained as a result of their involvement in a particular curriculum

• They must be specific and measurable

CSULA's Format

- Objective statement about <u>knowledge</u>
 - Knowledge outcome #1
 - Knowledge outcome #2
- Objective statement about skills
 - Skills outcome #1
 - Skills outcome #2
- Objective statement about <u>attitudes</u>
 - Attitude statement #1
 - Attitude statement #2

Yearly Cycle

5 Year Cycle

Potential Attitude Objective

- 1. Graduates of the Mechanical Engineering program ... successful in industrial, academic, and governmental positions ... continued professional and personal development throughout their careers.
- 2. Graduates of the Mechanical Engineering program ... will have a positive and inquisitive outlook on life and continuous learning, necessary to promote their professional and personal development ...
- 3. Graduates of the Mechanical Engineering program will be adequately prepared to face challenges ... in industrial, academic, and governmental positions ...
- 4. Graduate of the Mechanical Engineering program will be able to seamlessly adapt to different employment settings and engineering tasks in industrial and governmental positions
- 5. Within three to five years from their date of graduation, our alumni will be ... successful in industrial, academic, and governmental positions. .. inquisitive outlook on learning...

Sample Objective Data

Sample Potential New M.E. Outcomes

Knowledge

- Ability to apply common sense
- An understanding of newer disciplines such as biomedical and electro-mechanical
- A knowledge of project team management
- A knowledge of electro-mechanical fundamentals
- A knowledge of the financial and managerial aspects of project engineering
- A knowledge of quality standards
- A knowledge of geometric dimensioning and tolerances
- A knowledge of computer aided design and simulation software
- A knowledge of measurement and manufacturing techniques
- A knowledge of how mechanical engineering integrates into inter-disciplinary systems

Sample Potential New M.E. Outcomes

Skills

- Ability to perform manual sketching and drafting
- Ability to manage people and show leadership
- Ability to understand the "engineering language" effectively
- Ability to think in a logical, holistic process
- Ability to interact with supervisors and equals in a professional and honest way
- Ability to apply a "business model" to engineering
- Ability to present oneself well on a resume and during an interview
- Ability to select materials and manufacturing processes
- An ability to visualize designs from engineering drawings
- An ability to think in a logical sequential process

Sample Potential New M.E. Outcomes

Attitudes

- A recognition of the benefits of diversity in human resources
- A desire to have critical thinking and organizational skills
- An understanding of responsibility and accountability
- A desire to be a professional who exhibits values, dedication and a need for continual improvement
- A desire to be a flexible and adaptable team player (collaborative attitude)

Faculty Participation (for this to work, all faculty must play)

- Chair
- Department Assessment Coordinator
- Department Assessment Committee
- Department Implementation Committee
- Course Coordinators

Team Structure

Effort in Obtaining Data from Constituents

- Students
- IAB
- Alumni
- Faculty

easy easy hard medium

Making Assessment Part of the Culture

- Participation in assessment activities should have a positive effect on tenure and promotion files
- The Department committees should have membership created by ballot for fixed terms with equal weight and prestige as other University and College committees

Release/Assigned Time

- Outcomes based assessment is very time consuming
- Faculty need time in their schedules
- Assessment based continuous improvement will not continue if it is left as a background activity

Assessment Tools

Measurement Tools

- Surveys
- Collection/Presentation of Sample Work
- Exams/Tests
- Capstone Course Experience

Surveys

- Created by Faculty
 - Better tailored to fit needs
 - Could have some bias or other flaws
 - Faculty has to process data
- Purchased from Vendor
 - General questions
 - Data are processed when delivered

Created by Faculty

- For each outcome we asked:
 - Student performance
 - Outcome importance
- Target
 - Faculty
 - Students
 - Industry
 - Alumni
- We attempted Alumnus-Employer Link

Alumnus-Employer Link

- Plan was to contact alumnus
 - ask for his supervisor's name and permission to contact
 - Send supervisor a survey
- Not a successful tool
 - Most alumnus said no (too threatening)
 - Most supervisors said no (concern about the legal ramifications of an assessment of an employee shared with a third party)

Purchased from Vendor

- EBI: Engineering Benchmark Inc
- Questions directed at engineering outcomes (see survey)
- Survey can be customized with program specific questions
- Allows you to pick 6 other schools and compare results

EBI Participants for 2004

- Auburn University
- Boston University
- Bucknell University
- California State University-Los Angeles
- California State University-Northridge
- Carnegie Mellon University
- Christian Brothers University
- Columbia University
- Dartmouth College
- Duke University
- Florida Atlantic University
- Geneva College
- George Mason University
- Gonzaga University
- Grove City College
- Kettering University
- Louisiana State University
- Loyola Marymount University

- Northeastern University
- Northwestern University
- Old Dominion University
- Prairie View A & M University
- Rice University
- Santa Clara University
- Smith College
- Stevens Institute of Technology
- Syracuse University
- Texas A & M University-Kingsville
- Texas Christian University
- The University of Texas at Austin
- The University of Vermont
- Universidad de Monterrey
- University of Alabama
- University of Arkansas
- University of California-Riverside
- University of Connecticut

- University of Dayton
- University of Delaware
- University of Houston
- University of Illinois at Chicago
- University of Kansas
- University of Missouri-Columbia
- University of New Orleans
- University of Notre Dame
- University of Rochester
- University of Southern California
- University of Texas at Dallas
- University of Toledo
- University of Utah
- University of Virginia
- University of Wisconsin-Madison
- Vanderbilt University
 - Villanova University

•

- Walla Walla College
- Youngstown State University

Collection/Presentation of Sample Work

- Student work to be evaluated by constituents
- Web based portfolio (Webfolio)
 - Resume
 - Essay on contemporary issues
 - Essay on life-long-learning
 - Sample lab report
 - Abstract from senior design project

Webfolio

• Website sent to constituents

http://www.calstatela.edu/academic/ecst/webfolios/

- Password provided
- Assessment rubric included

Screen-Capture Backup #1

Student Webfolios

This is a collection of student essays and reports required for the ABET accreditation.

Screen-Capture Backup #2

Screen-Capture Backup #3

🕲 Mechanical Engineering Program Assessment 2005 - California State University, Los Angeles - Netscape 📃 🗖					_ C 🔼	
	<u>F</u> ile <u>E</u> di	it <u>V</u> iew	<u>G</u> o <u>B</u> oo	kmarks <u>T</u> o	ools <u>W</u> indow <u>H</u> elp	
	G	9	6	\otimes	Nttp://www.calstatela.edu/academic/ecst/webfolios/ME/ME2005/index.php	I. (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
		Mail	🙏 AIM	🟦 Home	🞧 Radio 🔤 Netscape 🔍 Search 🗧 Bookmarks 🛇 CNN.com 🛇 CNN.com	

Program Assessment for Mechanical Engineering 2005

Click on item to view file

CHOLAKIAN, TANYA	Contemporary Issues	Life-Long Learning	Lab Report	Resume	Extended Abstract
COLEMAN, SHENEL	Contemporary Issues	Life-Long Learning	Lab Report	Resume	Extended Abstract
DIAZ, FIDENCIÓ	Contemporary Issues	Life-Long Learning	Lab Report	Resume	Extended Abstract
GARCIA, ANGEL	Contemporary Issues	Life-Long Learning	Lab Report	Resume	Extended Abstract
GAMDIA, BRYAN	Contemporary Issues	Life-Long Learning	Lab Report	Resume	Extended Abstract
GONZALEZ, RAMON	Contemporary Issues	Life-Long Learning	Lab Report	Resume	Extended Abstract
HERWERTH, CHRISTOPHER	Contemporary Issues	Life-Long Learning	Lab Report	Resume	Extended Abstract
HONG, CHUN SHUN JAMES	Contemporary Issues	Life-Long Learning	Lab Report	Resume	Extended Abstract
HSU, JAKE	Contemporary Issues	Life-Long Learning	Lab Report	Resume	Extended Abstract
JANG, CHUL	Contemporary Issues	Life-Long Learning	Lab Report	Resume	Extended Abstract
JUNUS, DAMD	Contemporary Issues	Life-Long Learning	Lab Report	Resume	Extended Abstract
KNARR, KEMN	Contemporary Issues	Life-Long Learning	Lab Report	Resume	Extended Abstract
LOPEZ, JORGE	Contemporary Issues	Life-Long Learning	Lab Report	Resume	Extended Abstract
MPATI, LYLE	Contemporary Issues	Life-Long Learning	Lab Report	Resume	Extended Abstract
NUÑEZ, OSCAR	Contemporary Issues	Life-Long Learning	Lab Report	Resume	Extended Abstract
PALOMERA, MARCO	Contemporary Issues	Life-Long Learning	Lab Report	Resume	Extended Abstract
PEREZ, ARMANDO	Contemporary Issues	Life-Long Learning	Lab Report	Resume	Extended Abstract
PEREZ, JOSE LUIS	Contemporary Issues	Life-Long Learning	Lab Report	Resume	Extended Abstract
PINO, DAMD	Contemporary Issues	Life-Long Learning	Lab Report	Resume	Extended Abstract
RENCHER, JUSTIN	Contemporary Issues	Life-Long Learning	Lab Report	Resume	Extended Abstract
RUIZ, JOSE	Contemporary Issues	Life-Long Learning	Lab Report	Resume	Extended Abstract
SINGHAL, VIVEK	Contemporary Issues	Life-Long Learning	Lab Report	Resume	Extended Abstract
TAYLOR, DAVID	Contemporary Issues	Life-Long Learning	Lab Report	Resume	Extended Abstract
TREJO, REFUGIO	Contemporary Issues	Life-Long Learning	Lab Report	Resume	Extended Abstract
VEDARTHAM, AKILESH	Contemporary Issues	Life-Long Learning	Lab Report	Resume	Extended Abstract
VILLANEDA, ARMANDO	Contemporary Issues	Life-Long Learning	Lab Report	Resume	Extended Abstract
WINARTO, ANDRI	Contemporary Issues	Life-Long Learning	Lab Report	Resume	Extended Abstract

Maintained by: 🔤 ECST Outreach, Advising and Retention Center

Copyright ® by: California State University, Los Angeles

Last Update: August 9, 2005

Exams/Tests

Direct assessment (indirect are surveys)

- Course Exams
- Prerequisite Examinations
- Engineering-in-Training Exam (F.E.)
 - Externally controlled
 - Nationally normed

Prerequisite Examinations

- Not a successful tool
- Purpose was to test students' knowledge of prior completed courses at the beginning of the subsequent course
- Very threatening to faculty

Engineering-in-Training Exam

- Certification as an Engineer-in-Training (EIT) is the first step required under State law towards becoming licensed as a professional engineer
- U.S. Citizenship is not required. However, you must provide a social security number or an individual taxpayer identification number

EIT Requirements

- Three years of course work in a ABETapproved engineering curriculum OR
- Three years or more of engineeringrelated work experience anywhere in the world

EIT Scope

- Exam covers fundamental engineering subjects including mathematics and the basic sciences
- Two sessions: Four-hour morning and fourhour afternoon
- In the morning, all examinees answer the same 120 questions covering the breadth of knowledge in engineering.
- In the afternoon, examinees choose one of seven subject areas

Implementation of EIT

- How do we make it required?
 - Students will not attempt without motivation
 - Required during the capstone (senior design) course
- How do we entice students to take it seriously?
 - Effort to do well will be reflected in scores
 - Reimburse students who pass

First Attempt at Enforcing EIT

Graduation

EIT Results

Sent in July

Summer Quarter	Spring Quarter (Senior Design A)	Winter Quarter (Senior Design B)	Fall Quarter (Senior Design C)	Summer Quarter
		t	f	t

EIT Application

Due in February

EIT Exam

in April

2nd Attempt at Enforcing EIT

Graduation

Summer Quarter	Spring Quarter (Senior Design A)	Winter Quarter (Senior Design B)	Fall Quarter (Senior Design C)	Summer Quarter
1		t t		

EIT ApplicationEIT ExamEIT ResultsDue in Augustin OctoberSent in January

EIT Results

- Pass/Fail for Overall Examination
- Unanimous Statistics Sent to Dean
 - Subject (fluid mechanics, statics, etc.)
 - Average number of questions answered corrected by:
 - Your Program
 - State wide
 - National

Capstone Course Experience

- Students are hungry to finish program (a little more motivated to help us)
- Students have completed most of the program
- Good opportunity data collection
 - Senior survey
 - Writing sample
 - Final oral presentation

Sample Presentation Results

Analysis

Scatter Graph Interpretation

Nice	Good
Low Benefit	Area to Focus

Student Performance

Importance

Weighting Factors #1 How Do We Decide How Much Value to Place on Each Constituent?

Equal Weighting:

- Faculty Vote x 1
- Indust. Reps. x 1
- Alumni x 1
- Students x1

Unequal Weighting:

- Faculty Vote x 10
- Indust. Reps. x 20
- Alumni x 15
- Students x 5

Weighting Factors #2 How Much Value to Place on Each Tool?

Equal Weighting:

- Survey Vote x 1
- Webfolio x 1
- Exams x 1
- Capstone x1

Unequal Weighting:

- Survey Vote x 10
- Webfolio x 20
- Exams x 15
- Capstone x 5

Program Modifications

Strengths / Areas for Improvement

- Identifying strengths are great
 - Uplifting to faculty so see things working
 - Can be used for recruitment of students
- Areas for Improvement need action
 - Change is difficult
 - Some changes make things worse
 - A wrong modification is better than no modification

Examples of Program Modification

- Minor (changes to existing courses)
 - Students now design their own experiments in lab courses
 - Increase group activities in classes
 - Assign current-engineering event projects
- Major (adding/deleting courses)
 - A second dynamics/kinematic course is now required
 - A technical writing course has been added

End Result

- Participation from all constituents
- Data collected on a regular basis using assessment tools
- Data analyzed, and strengths and weaknesses identified
- Programs modified to address weaknesses

