Spectrophotometry – Fundamentals

1. Electromagnetic radiation - properties

Relationships

a. Frequency/Wavelength - $v\lambda = c$ where c = the speed of light in vacuum (2.998 x 10⁸ m/s)

b. Energy/Frequency – E = hvwhere h = Planck's constant (6.626 x 10⁻³⁴ J s⁻¹), v (Hz)

$$\mathbf{E} = \frac{hc}{\lambda} = \mathbf{hc}\,\overline{\nu}$$

where $\overline{\nu} = \frac{1}{\nu}$ and called the wavenumber

2. Electromagnetic Spectrum

Why is a red solution red?

e.g. FeSCN²⁺

Wavelength (nm)	Color	Complementary color
400-435	Violet	Yellow-green
435-480	Blue	Yellow
480-490	Green-blue	Orange
490-500	Blue-green	Red
500-560	Green	Purple

3. Absorption of Light

Term & Symbol*	Definition	Alt. Name & Symbol
Radiant power P, P ₀	Energy of radiation	Radiation intensity I, I ₀
Absorbance A	Log P ₀ /P	Optical density D
Transmittance T	P/P ₀	Transmission T
Path length of radiation <i>b</i>		l,d
Absorptivity <i>a</i>	A/bc	Extinction coefficient k
Molar absorptivity ε	A/bc	Molar extinction coefficient

* Recommended by American Chemical Society

a. <u>Beer's Law</u> A = $abc_{(g L^{-1})}$ or A = $\varepsilon bc_{(mol L^{-1})}$

<u>Ex:</u> A 7.50 x 10^{-5} M solution of KMnO₄ has T of 36.4% when measured in a 1.05-cm cell at 525nm.

(1) Calculate the absorbance of this solution:

(2) Calculate the molar absorptivity of $KMnO_4$:

b. Limitations to Beer's Law

(1). <u>Real Limitations</u> – high concentrated solutions, concentrated electrolyte solutions (proximity alters molecular absorption).

(2) <u>Chemical Limitations</u> – absorbing species participate in association or dissociation reactions, e.g. weak acids in concentrated solutions, complexation.

$$HNO_2 + H_2O \longleftrightarrow H_3O + NO_2^{-1}$$

(3) <u>Instrumental Deviations</u> – polychromatic radiation used to measure absorbance, stray light.

- Use of filters, diffraction gratings
- Molar absorptivities must be equal

Stray radiation

$$A = \log \frac{P_0}{P} \qquad A = \log \frac{P_0 + P_s}{P + P_s}$$

where P_s = incident power of stray radiation

4. Absorption Spectra

- Plotting of spectral data
- λ maximum, nm
- Solutions of different concentrations

5. Theory of Molecular Absorption

-every molecular species has a unique set of energy states; the lowest termed the *ground state*.

Excited State – energy of photon transferred to molecule:

a. Types of Molecular Transitions

- (1) <u>Electronic transition</u> electron between two orbitals (UV-vis). hv = Energy Difference of Orbitals
- (2) <u>Vibrational transitions</u> vibrational states associated with bonds holding molecule. Involve simultaneous:
- (3) <u>Rotational transitions</u> changes in rotational states, about its center of gravity.

Types of electronic transitions

 $\sigma \text{ to } \sigma^* \longrightarrow \text{ Alkanes}$ $\sigma \text{ to } \pi^* \longrightarrow \text{ Carbonyl compounds}$ $\pi \text{ to } \pi^* \longrightarrow \text{ Alkenes, carbonyl compounds, alkynes, azo compounds}$ $\eta \text{ to } \sigma^* \longrightarrow \text{ Oxygen, nitrogen, sulfur and halogen compounds}$ $\eta \text{ to } \pi^* \longrightarrow \text{ Carbonyl compounds}$

Highest occupied molecular orbital (HOMO)

Lowest unoccupied molecular orbital (LUMO)

 $E = h v = h v / \lambda = E (LUMO) - E (HOMO)$

Therefore - Overall change in Energy with an orbital of a molecule is:

 $E = E_{electronic} + E_{vibrational} + E_{rotational}$

 $\begin{array}{l} E_{electronic} \approx 10 \ E_{vibrational} \\ \approx 100 \ E_{rotational} \end{array}$

Emission Processes

b. <u>Luminescence</u> – emission of light from any excited state of a molecule.

- more sensitive than absorption measurements

- (1) <u>Fluorescence</u> emission of photon during transition between states with same spin quantum #'s (e.g. $S_1 \rightarrow S_0$)
- (2) <u>Phosphorescence</u> emission of photon during transition between states with different spin quantum #'s (e.g. $T_1 \rightarrow S_0$)

6. Instrumentation

(a) Basic components

- (1) Radiation source Visible = tungsten filament lamp; UV = deuterium and hydrogen lamps
- (2) Monochromators/filters Restricts wavelength to offer narrow band of radiation
- (3) Sample containers (cuvettes or cells) glass, plastic or quartz (1 cm)
- (4) Phototubes/photomultiplier tubes emit photoelectrons after being irradiated, current is then amplified and measured

- Single Beam Instruments
- Double Beam Instruments
- Array Detector Instruments

7. <u>Scope - Application to absorbing species</u>

Chromophore	Example	Solvent	λmax
Alkenes	$C_6H_{13}CH=CH_2$	n-Heptane	177 nm
Alkynes	CH ₂ =CHCH=CH ₂	n-Heptane	196 nm
Nitro	CH ₃ NO ₂	Isooctane	280 nm
Nitrate	C ₂ H ₅ ONO ₂	Dioxane	270 nm

<u>Absorption by inorganic ions (η to σ *)</u> Carbonate, 217 nm; nitrite, 313 nm; azido, 230 nm

<u>Absorption due to σ to σ^* </u> Methane, 125 nm; ethane, 135 nm

Absorption of aromatic compounds

Compound	Formula	<u>λmax</u>
Benzene	C_6H_6	256
Toluene	$C_6H_5CH_3$	261
Phenol	C ₆ H ₅ OH	270
Styrene	C ₆ H ₅ CH=CH ₂	282

8. Optimizing Experimental Conditions

a. Wavelength Selection

b. pH of Solution

c. <u>Reagent Concentration</u>

d. Temperature

e. Interfering Substances

9. Applications

a. <u>Health Sciences</u> – 95% of all analyses are performed by spectrophotometry.

- b. Biological Sciences
- c. Chemical & Environmental Sciences

Organic, inorganic systems and biochemical systems

10. Analysis of Mixtures

$$Mixture_{Abs} = \varepsilon_{\chi} b[x] + \varepsilon_{Y} b[Y] + \dots$$

where ε = molar absorptivity of each species at wavelength specified b = cell pathlength

-measure A at more wavelengths then there are components in mixture

 \underline{Ex} . Two-component mixture, at least three wavelengths. More is better – increase in accuracy.

11. Flow Injection Analysis

