Chem 431A-L01-F'07

page 1 of 5

Chem 431A-Lecture 2 9/24/07 admin:

(1) sign attendance sheet.

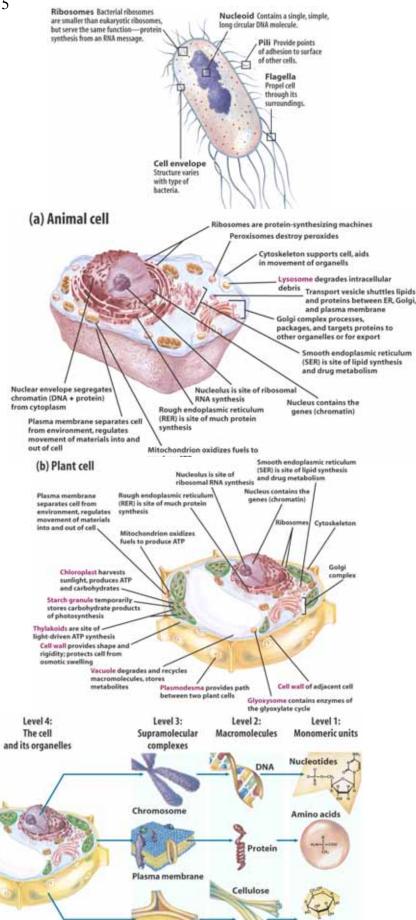
lecture:

The role of water is very important in living environment.

water is special in that it has

- -hi specific heat
- -very polar (solubility of ions)
- -surface tension high allows capillary action
- lower density in solid form vs liquid form.

But water is also important as a medium for the interaction and even chemical reactions which take place within a cell.


Here we need to review the various types of interactions that can take place between and among molecules.

5) weak interactions in the cell: aqueous solution-like environment. Covalent bonding alone is not sufficient to determine the actual shapes of molecules. complexity of these molecules very much depends on noncovalent interactions.

examples:

nucleic acids like DNA or RNA are really polymers of smaller units (monomers) called nucleotides, these are held together by covalent bonds involving phosphate groups - phosphoesters and phosphoanhydride bonds. these molecules has a specific 3d structure (double helix)

proteins are even more complex and the **structure of the cells: hierarchy:

Cell wall

amino acids forming these polymers (polypeptide) are precisely positioned to result in unique or nearly unique 3 d shapes and structures.

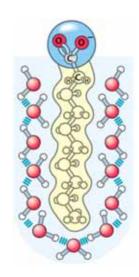
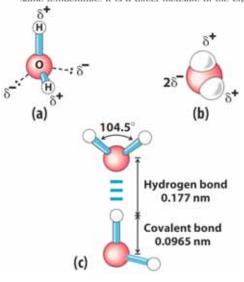
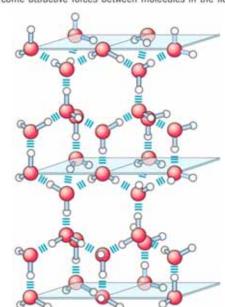
what are these non covalent interactions? same as those learned in general chemistry:

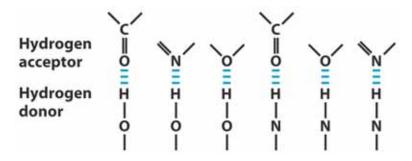
ion-ion, dipole-ion, dipole-dipole, dispersion, H-bond....etc. importance of water can not be overemphasized.

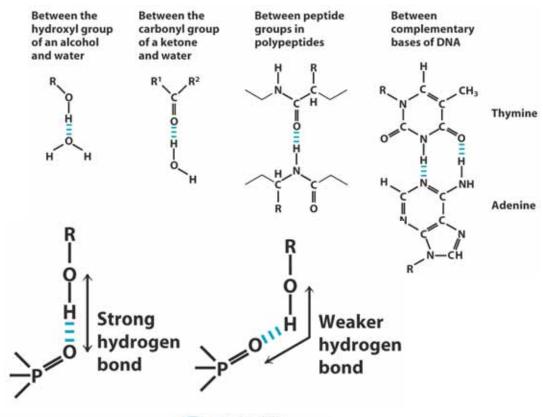
Solubility- "like dissolves like",etc eg.- O₂ can dissolve in water. so aquatic animals can live. similarly for CO₂,

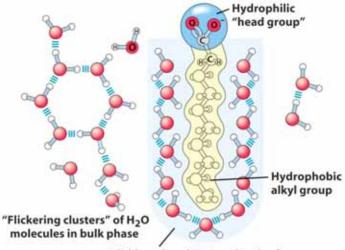
- allows cell membranes to stay undissolved.

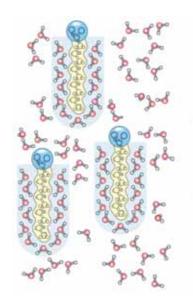
- allows cell membranes to stay undissolved and keeps integrity of living cells.

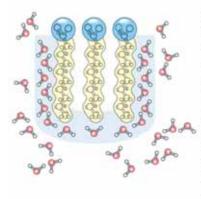





TABLE 2-1 Melting Point, Boiling Point, and Heat of Vaporization of Some Common Solvents

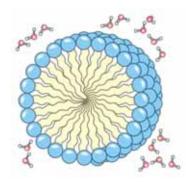

	Melting point (°C)	Boiling point (°C)	Heat of vaporization (J/g)*
Water	0	100	2,260
Methanol (CH ₃ OH)	-98	65	1,100
Ethanol (CH ₃ CH ₂ OH)	-117	78	854
Propanol (CH ₃ CH ₂ CH ₂ OH)	-127	97	687
Butanol (CH ₃ (CH ₂) ₂ CH ₂ OH)	-90	117	590
Acetone (CH ₃ COCH ₃)	-95	56	523
Hexane (CH ₃ (CH ₂) ₄ CH ₃)	-98	69	423
Benzene (C ₆ H ₆)	6	80	394
Butane (CH ₃ (CH ₂) ₂ CH ₃)	-135	-0.5	381
Chloroform (CHCl ₃)	-63	61	247


*The heat energy required to convert 1.0 g of a liquid at its boiling point, at atmospheric pressure, into its gaseous state at the same temperature. It is a direct measure of the energy required to overcome attractive forces between molecules in the liquid phase.

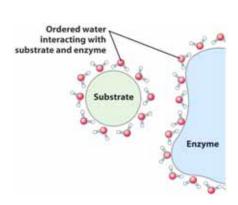


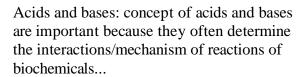


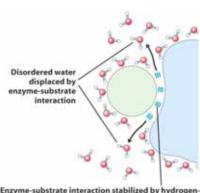
Highly ordered H₂O molecules form "cages" around the hydrophobic alkyl chains


Dispersion of lipids in H₂O

Each lipid molecule forces surrounding H₂O molecules to become highly ordered.


Clusters of lipid molecules


Only lipid portions at the edge of the cluster force the ordering of water. Fewer H₂O molecules are ordered, and entropy is increased.



Micelles

All hydrophobic groups are sequestered from water; ordered shell of H₂O molecules is minimized, and entropy is further increased.

Enzyme-substrate interaction stabilized by hydrogenbonding, ionic, and hydrophobic interactions