Chemistry 101 Winter, 2010

Instructor/phone contact	Office/email	Lecture/Location
Dr. Gregorio Santillan (323)343-2313	Physical Sciences 610 gsantil@calstatela.edu	Section 01:MWF 8-8:50 am, PS 158 #10606

Office hours are posted outside the instructor's office and in the Chemistry Department office, PS 616. These are: MWF 11am – 12 noon, T:11am-1 pm.

Required Materials

- Principles of Chemistry: The Molecular Science, Moore, Stanitski, Jurs.
- OWL username and password bundled with new textbook or purchased separately at http://www.cengage.com/support/
- Experiments for General Chemistry (4th) edition, *Goldwhite and Tikkanen*
- Bound laboratory notebook
- Scientific calculator
- Ability to access the Chemistry department web site: <u>http://www.calstatela.edu/dept/chem/class-notes.htm</u> (please note the website will be under revision)
- E-mail address (this is free at King Hall D-150 if you don't already have one) and CSLA NIS account
- Ability to access internet site for electronic homework assignments
- Safety glasses or goggles that meet the Z-87 specification ("Z-87" will be imprinted somewhere on the glasses if they meet it)
- Chemistry Breakage Card (\$10 at cashiers office (Adm.128)

Suggested Materials and Supplies

• Molecular models kit

• Lab jacket or apron

Course Description

Chemistry 101 is a rigorous 5-unit course that demands approximately 20 hours of study per week in addition to lecture, recitation and laboratory attendance. Chemistry 101 is the first quarter of a three-quarter sequence that provides a foundation in the chemical sciences suitable for premedical, pre-pharmaceutical, engineering and science majors. Students are required to pass a diagnostic exam at the testing office and receive permission from the department in order to enroll in Chemistry 101. A year of high school chemistry and completion of Math 102 (college algebra) is highly recommended. <u>Students are required to be concurrently enrolled in one lecture section, one lab section and one recitation section</u>.

Electronically graded homework (EHW) will be assigned on a weekly basis, and these scores will be incorporated into your final grade. Each student's homework set will be identical in difficulty, but different in the problems' specifics. You will need to be vigilant in the completion of these assignments—the computer may be set to give you a limited number of tries to obtain the correct answer. The deadline to complete each EHW set will be posted for each assignment.

Homework sets completed after the deadline will not be accepted. You may begin work on EHW sets any time before the weekly deadline. It will be of great help to you and your grade if you review some of the problems at the end of each chapter and the tutorials and practice problems available on the OWL site before attempting the EHW sets. EHW sets can be accessed at http://owl1.thomsonlearning.com/

Human graded homework will be due weekly at your **recitation** meeting. These problems will be *more* difficult than the e-graded homework and will bear a stronger resemblance to the types of problems you should expect on your examinations. These will be graded by your recitation instructor and returned to you on a schedule set by your instructor.

Course Goals and Objectives

The goals of this course are to contribute to the mastery of scientific literacy, critical thinking, problem solving, and idea integration skills necessary of students pursuing careers in technological disciplines. Reading, problem solving, performing experiments, writing reports, participating in discussions facilitated by the instructor, small-group activities, and lectures will be employed to accomplish these goals.

The course objectives are to introduce basic concepts of chemistry including nomenclature, stoichiometry, the periodic table, electronic structures of atoms, and fundamentals of chemical bonding. Chemistry 101 is a core course designed to familiarize students with the basic concepts of chemistry that are necessary for success in Chemistry 102 and higher courses. It will also provide students with the skills necessary to successfully reach their career objectives. Students should consider the time devoted to this course an investment in their future.

Requirements

Students are required to conduct themselves in a professional manner during class. Cell phones, pagers and other electronic devices must be turned off during lecture, recitation and lab classes. Late arrivals, side-discussions and other unprofessional behavior will be addressed at the instructor's discretion. Attendance may be recorded. Students returning from absences are advised to copy lecture notes from students in their study group.

Students are required to take quizzes and examinations designed to measure each individual's understanding of the course objectives cited above, which will include both problem solving and essay responses. Weekly quizzes will be administered during recitation. Unannounced quizzes, including instant response quizzes, may be given during lecture at the discretion of the instructor. Students are required to take two midterms and a final examination. Make-up exams will not be available for midterm exams, and will only be made available for the final exam at the discretion of the instructor for medical emergencies or other extreme situations verified in writing by a third party. For example, in case of medical emergency, the student must provide a signed physician's note to the instructor before a make-up exam will be scheduled.

Students must be concurrently enrolled in Chemistry 101 recitation and laboratory

sections to take this course. Students will perform experiments that demonstrate the basic concepts of chemistry and microscopic properties, and prepare written reports describing the principles, techniques, results, conclusions, and sources of experimental error in these experiments. This is a very important component of this course worth approximately 25% of your grade. A student who does not pass the lab will not pass the course!

Study Suggestions

- Study illustrations and diagrams and read the text before attending lectures.
- Form a small (3 or 4 person) study group.
- Do as many problems possible in addition to the assigned homework and do them without relying on solution keys.
- Work additional problems and review for the exams with study group members.
- Get help from the University Tutorial Services staff and your instructors in a timely manner.
 The office hours of all Chemistry 101 instructors are posted in the Department office (PS 616). Students should also find assistance in online tutorials connected to their electronic homework.

For more study tips, read the Preface of your textbook.

Grading

The grade in this course is assigned largely on the basis of points accumulated through activities in the following categories:

Activity	Points Possible
Two midterms @ 150 points each	300
Laboratory Reports(200) and lab technique(25)	225
Recitation	145
15 point math review, 80 points for best 8 of 9 recitation quizzes	
(valued at 10 points each), 50 points for assigned homework,	
e-graded homework	100
Final Examination	230
TOTAL	1000

The instructor may make minor changes to the total number of points as necessary. Additional quizzes given during lecture may be used to assign extra credit. The class will be "curved" but there is a level of competence that must be achieved to pass the class. You must pass the lecture with at least 50% of the points, and you must also pass the laboratory/recitation with at least 50% of the points. The instructor will provide details of the requirements for specific letter grades as the quarter progresses. Plus and minus grades will be issued in this course. *If you fail either the lecture or the laboratory, you will not pass the class!*

Dropping, CHEM155, Incompletes and Withdrawals

It is the University's hope that nobody withdraws from any course. Be aware that the preparatory chemistry class, CHEM 155 (a 4 unit class), is also offered this quarter (lectures, MW, 11:40AM-12:30PM, rec/activity M 1:30PM-4:10PM, or W 1:30PM-4:10PM). *If you have trouble in the first 4 or 5 weeks, you can withdraw from CHEM 101 and late add CHEM 155 with the help of the NSS advisement office*.(Note that this class is not available at this time).

However, before you consider withdrawing from the course without adding CHEM 155, you should be aware of the University Policy on withdrawal: you are not allowed to drop a course because you have found the workload to be too heavy, or because you are getting a poor grade. It is your responsibility to be aware of these policies. Also, you should be aware that there are specific policies on the incomplete grade, IN. It is not automatically given—you must request it

from your instructor who is not allowed to give an IN grade unless certain conditions are met. Consult the schedule of classes and your University catalog for details.

Schedule of Topics and Laboratories

The scheduled list of topics and laboratory exercises is tabulated below. The homework solutions will be posted on the bulletin board outside Physical Sciences 155 and in a library limited loan folder after the due date.

Week	Topics (Chapters)	Laboratory Exercise from G&T (points)	Homework problems (week due)
1	Nature of Chemistry (1) Atoms& Elements (2)	Check-in, Review math and measurements	Chapt. 1: 63, 65, 66,68,69(week2) Submit Math Review (15) (wk2)
2	Atoms and Elements (2)	Cookie Statistics (20)	Chapt. 2: 60, 71, 72, 74, 75 (week 3)
3	Chemical Compounds (3)	#1: Density (25)†	Chapt. 3: 61, 62, 64, 65, 78 (week 4)
4	Chem. Compounds (3);Quantities of Reactants & Products (4)	#3: Molecular Sizes (25)†	Chapt. 4: 56, 58, 59, 60, 67 (week 5)
5 *	Test #1, Quantities of Reactants & Products (4)	#2: Nine Bottles (20)	Chapt. 4:, 70-74, (week 6)
6	Chemical Reactions (5);	#4: Formula of a Solid (25)	Chap.t 5: 69, 73, 74, 77, 78 (week 7)
7	Energy and Chemical Reactions (6)	#14: Acid-base Stoichiometry (30)	Chapt. 5: 79, 80 Chapt. 6: 61, 64, 67 (week 8)
8 *	Test #2. Energy and Chemical Reactions (6)	#5 Heat and Temperature; Law of Dulong and Petit (25)	Chapt. 6: 69, 70, 78, 81, 82 (week 9) *note 2 HW due wk10
9	Energy & Chem Reactns (6) ; Electron. Config. (7)	#20: Solution Calorimetry (30)	Chapt. 7: 72, 74, 79, 87, 93 (week 10) Note: 2 HW due wk10
10	Electron Configuration & Periodic Table (7)	Check-out	Chapt.7: 88-92 (Week 10 also)

† see attachment for additional procedures

* Mid-term exams will be administered during these weeks. Test #1 is scheduled for February 1 and Test #2 is scheduled for February 24, 2010

Exam Schedules

Mid-term exams will be given during on the 5th and 8th weeks of the quarter, unless otherwise announced by the instructor in class. The material may include topics discussed up to the Monday before the exam. The final exam will be given on the date given in the printed Winter, 2010 Class Schedule. The midterm exams will be on Feb. 1, Monday, and Feb. 24, Wednesday.

Laboratory and Recitation

The recitation section is devoted to reviewing the topics related to the homework and the theoretical and technical aspects of the laboratory exercise. Students will have a weekly quiz during their recitation section. Written homework is due when their recitation section meets. Recitation instructors will provide details during the first class meeting.

The laboratory section meets independently of the recitation section. Laboratory instructors will provide details during the first class meeting regarding the policies to be followed in the lab. In all experiments you are required to wear safety glasses that meet the Z-87 standards at all times during the laboratory period. *If you do not have appropriate eye protection, you will have to leave the laboratory and lose the points for that experiment.*

Unless otherwise indicated by the laboratory instructor, students will enter data into bound laboratory notebooks. In experiments where students work with a partner, both need to enter the data into their respective notebooks before leaving the laboratory. After completing the experiment, the instructor will initial the page on which the student entered the data in their laboratory notebook. Students are encouraged to do the experiments individually unless instructed otherwise by the instructor.

The instructor will tell students when final written reports are due. Final reports submitted for grading will be either **neatly** written in each student's notebook following the data pages or prepared with a word processor with a photocopy of the original raw data attached. **All** laboratory reports will contain the sections described below:

(1) **Prelab:** A detailed description of how the student plans to perform the experiment showing a timed flowchart of the detailed steps. **This section must be completed before coming to lab**. The instructor has the discretion to grade the prelab assignment and use that grade for that week's quiz grade.

(2) **Raw Data:** The data (initialed by the professor) that the student collected in the lab period. A faithful copy of the data can also be used. Neatness is not imperative here, but it must be readable, with the data clearly labeled and the units of measurement and the uncertainty listed in ink. If this section is missing, the student may receive a **ZERO** credit for that experiment.

Formal Report (graded)

Title page: the student's name (& lab partner's [if applicable]), date, and experiment title. **I. Purpose:** A brief description of the experiment and what the student intends to accomplish

II. Theory/Principles: A summary of the concepts explored in the experiment. If there are mathematical equations used in your calculations, they are derived and explained here. This section is one of the most valuable sections in the reports in terms of the number of points. Just writing equations is not enough! You need to write this in your own words.

II. a Experimental: A section that may refer to the laboratory manual, but also describe deviations from or improvements to the procedure. (Instructor may advise you to skip this if your flowchart is attached to your lab report).

III. Raw Data: A table containing the data the student collected in the experiment complete with units. In some cases the student may also want to include results in this table.

IV. Analysis: Calculations and Graphs: This section should at least show sample calculations showing how the student obtained their results.

V. Final Results: The results of each student's experiment in a table.

VI. Conclusions/Discussion: In this section you compare your results to the accepted literature values whenever possible. Make sure to reference literature values; a good source is the CRC Handbook of Chemistry and Physics, which is in the reference section of the library. The student should also identify the most critical measurement (that which has the greatest uncertainty) and point out approximations that may affect the accuracy of your answer.

VII. Questions: Answer the questions at the end of the experiment. Note that some of these questions are based on experimental results. Note also that often, the answers to these questions may be 30 - 40% of your report grade.

Laboratory Safety

Safety must be a primary consideration for all persons entering and working in a chemistry laboratory. The experiments have been chosen for their relation to lecture topics and to teach basic techniques. However, students have the responsibility to preview the experiment, learn and understand the appropriate safety precautions for each experiment and to consult with the instructor when safety procedures are not clear. Finally, observe the following general:

- Safety glasses must be worn at all times when *anyone* is doing experimental work in the lab.
- Smoking, eating or drinking are not permitted at anytime in the lab.
- Before beginning the first experiment, familiarize yourself with the location of safety equipment in the lab. These include the fire extinguishers, safety shower, fire blanket and eye wash. Your instructor will describe their appropriate use.
- Read your experiment and note any specific safety precautions.
- Work is not permitted in the labs except during regular class hours in the presence of an instructor. Performance of unauthorized experiments is not allowed.

Additional procedures for Week 2 experiment:

Experimental confirmation of sucrose percentage.

Take a small vial (supplied by instructor) and label it with your name and section number. Then weigh it accurately (using the analytical balance) and record the mass. Add about 3 mL of one of your sucrose solutions to the vial (ask your instructor which one) and record the identity in your notebook. Weight the vial and solution and record that mass in your notebook. Give the vial containing the solution to your lab instructor who will place it in the oven until the following

week to evaporate all the water. When you return to the lab next week, record the mass of the vial and its contents and calculate the % sucrose that was in your solution. Submit your data and this result with your write-up for week 3's experiment. Write a brief (one paragraph) discussion of your result; how close is it to the composition you prepared ?

Addendum for Winter, 2010: CHEM 101 LECTURE SCHEDULE FOR WINTER 2010.

Below is an approximate projection of the overall schedule for our lecture classes. It is provided to you to help you come to class prepared each and every lecture. Please come prepared to be called upon to explain key concepts for the scheduled lecture.

This schedule applies only to the lecture portion of the class taking into account the holidays, mandated furloughs and individual furloughs as scheduled for your lecture instructor. Information for the individual furlough schedule of your lab and recitation instructors can be obtained directly from your specific professors.

On weeks in which recitation does not meet due to holidays or furloughs, students are still expected to do the assigned homework for that week, and to arrange to submit it to their respective instructors. On weeks in which lab does not meet due to holidays or furloughs, students are expected to still read and be familiar with the theory of the experiment. Those experiments will not be made up in following weeks, but students grades will normalized so as to maintain the same total points as other students. In general, grades from different recitation classes and lab classes may be normalized to account for significant differences in grading criteria.

Wk	Mon	Wed	Fri	homework
1	Jan 4	101 6	101 8	Review
	chapt 1.1-1.6	chapt 1.7-1.12	chapt 2.1-2.4	
2	101 11	101 13	15	Chapt 1 due for this
	chapt 2.5-2.7	chapt 2.8-2.9	Univ.Furlough	week's recitation
3	18	101 20	101 22	Chapt 2 HW due for
	MLK Holiday	chapt 3.1-3.4	chapt 3.5-3.7	this week's recitation
4	101 25	101 27	29 Dr Santillan	Chapt 3 HW due for
	chapt 3.8-3.10	chapt 4.1-4.3	Furlough	this week's recitation
5 *	101 feb 1	101 3	101 5	Chapt 4 HW due for
	Test 1 (on chs 1-3)	chapt 4.4-4.5	chapt 4.6-4.7	this week's recitation
6	101 8	101 10	101 12	Chpt 4,5 HW due for
	chapt 5.1-5.2	chapt 5.6-5.7	chapt 5.8	this week's recitation
7	101 15	101 17	19 feb	Chapt 5 HW due for
	chapt 6.1-6.2	chapt 6.3-6.5	Univ.Furlough	this week's recitation
8 *	22 Dr Santillan	24 Test 2	101 26	Chapt 6 HW due for
	Furlough	(on chapts 4-5)	chapt 6.6-6.8	this week's recitation
9	101 mar 1	101 3	101 5	Chpt 6,7 HW due for
	chapt 6.9-6.10	chapt 7.17.3	chapt 7.4-7.6	this week's recitation
10	101 8	10 survey	12 Dr	Chapt 7 HW due for
	chapt 7.7-7.12	ch 7.13; review	Santillan Furlough	this week's recitation
11	101 Final			
	mar 15 8-1030 am			

* note the test dates on these weeks.